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Abstract Every year, millions of people fill out brackets for the NCAA March Madness
Tournament. Strategies for picking a potential winning bracket range from strenuously
analyzing regular season statistics to comparing college mascots. These strategies
naturally make the curious mind consider whether one comparison in particular is effective
at predicting which teams will do well in the tournament. In particular, this paper
investigates whether or not the number of rebounds per game that a team averages has
a measurable impact on how far a basketball team progresses in the NCAA College
Basketball Tournament. Using data from the 2013 —2019 College Basketball Tournaments,
we construct a series of linear probability models using the ordinary least squares method
to analyze this impact and find that each additional rebound per game averaged by a team
results in a 2.62 percentage point increase in the probability that the team will progress
to the Round of 32 and a 1.99 percentage point increase in the probability that the team
will progress to the Sweet 16 when controlling for other performance metrics. Further,
we fail to find that rebounding has a measurable impact on the probability that a team
will progress past the Sweet 16. These results are rigorously tested for robustness and
applications of the results are discussed.

1. Introduction

The March Madness NCAA Basketball Tournament is a unique event in the sporting
world that draws the attention of both sports-loving and sports-neutral individuals
alike. Perhaps even more unique than the games themselves are the lengths that
individuals go to in predicting the outcome of the tournament. Even the novice student
of probability understands the unlikeliness of predicting 63 consecutive coin tosses
with complete accuracy. Yet, every March, millions of people across the United
States complete brackets consisting of 63 College Basketball match-ups in an effort to
become the first person to ever flawlessly predict the comprehensive outcome of the
tournament. Each year, the frenzy grows larger and larger with an increasing number
of high-status individuals and industries offering multi-million dollar (and, in some
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cases, even billion dollar) prizes.

To the curious statistical mind, it is natural to wonder if there exists a mathematical
way to approach the issue of designing a perfect bracket. While correctly predicting
upsets and expected wins seems almost as ambiguous as flipping a coin, past research
has shown that if one focuses on the most pertinent statistics, correctly choosing the
winning team is not as random an event as we might originally think (Lopez et al,
2018). One in-depth study of the NCAA Basketball Tournament observed that we
often inaccurately denote games where higher seeded teams lose to lower seeded
teams as upsets, noting that these “seeding” rankings are assigned by a committee and
are based off an obscure number of observables (Kvam & Sokol, 2006). This analysis
make it clear that in order to accurately predict events within the bracket, we have to
be focusing on the correct performance metrics.

One performance metric that is often overlooked by fans but heavily emphasized
by coaches to their players is rebounds. Players are often told to focus their efforts in
games on pulling down as many rebounds as they can under the assertion that this
will increase the team’s likelihood of winning the game.

Our focus in this project will be to extend this implication to the annual NCAA
basketball tournament and analyze whether or not the average number of rebounds
per game that a team achieves during the regular season has an impact on how far
a team progresses in the tournament. If teams with higher rebounding averages do
indeed tend to be more successful in the tournament, fans wishing to fill out more
accurate brackets could observe the number of rebounds per game that each team has
and use that information in determining which teams to predict for wins, and which to
predict for losses. Additionally, teams hoping to improve their chances of success in
the NCAA tournament could do so by focusing on rebounding during practice.

To many, choosing rebounds as the main focus of this analysis may seem mysterious.
After all, grabbing a rebound does nothing to change the number of points showing
on the scoreboard. However, from a coach’s perspective, every single rebound is
crucial to the eventual outcome of the game because it is associated with another key
performance metric: possession time. Using data from the 1994 NCAA Basketball
Tournament, Bradley P. Carlin (1996) was able to create a simple model based off of
standard performance metrics and data from the Las Vegas point spread predictions
that accurately predicted the outcome of a game that resulted in an upset. Subsequent
research showed that one of the most critical factors in predicting the results of a
basketball game are metrics related to possession time (Lopez & Matthew, 2015, p. 5).
Models that focus heavily on these metrics have been shown to be strikingly accurate,
though not perfect, at predicting game results. While there is some continued debate
about whether models based off of Markov-Chain probabilities are more accurate than
Logit/Probit models (Strumbelj & Vracar, 2012), the fact that possession time is a
powerful ingredient in creating an accurate model is clear.

Pursuant to this crucial idea of possession time, in this paper, we explore whether
rebounds per game have a significant impact on the progress a team makes in the
NCAA Basketball Tournament. Using rebounds as our key performance metric is
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based on the importance of possession time, since more rebounds results in more time
with the ball. Rather than focusing on one particular NCAA tournament, our study
uses data from 7 such tournaments, spanning the years 2013-2019. Using these data
we construct a linear probability model and find that rebounding is correlated with
success in the first two rounds of the tournament, and find no significant relation for
the later rounds.

2. Data

To explore our question we collected data from the NCAA on tournament results from
the 2013 - 2019 NCAA Basketball Tournaments. For each tournament year, each
team and the seed that they were assigned along with how many games they won
were recorded. Performance metrics at the per game level were then downloaded
from Basketball-Reference and matched with each tournament team from these years.
Together, these sources provided us with a data set that contains detailed information
on the population of NCAA qualifying tournament teams spanning the years 2013 -
2019.

Among the performance metrics included in our data set is the number of rebounds
per game achieved by each team during the season. Each game, a team achieves a
certain amount of offensive rebounds and defensive rebounds. When added together,
they produce a statistic called, “total rebounds,” or more simply, just, “rebounds.”
Reducing this statistic to a per-game-seasonal-average produces our statistic of interest:
“rebounds per game.” Analyzing this metric is crucial to answering the question posed
by this paper, and hence our independent variable for this study will be the number of
rebounds per game.

In addition to rebounding and NCAA tournament data, our data set also includes
other team metrics all measured at the per game level. These include points, field goal
percentage, steals, blocks, turnovers, personal fouls, and each team’s assigned seed
number. Having these data readily available is very useful in controlling for other
factors besides rebounds in our analysis of tournament progression.

Defining our outcome variable, however, is somewhat more complicated since the
progress a team makes in the NCAA tournament has several different interpretations.
For this purpose, our study includes multiple, similar, outcome variables, described in
the table below.
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TABLE 1. List of Included Outcome Variables

Outcome Wins Required Variable
A team progresses to the Round of 32 1 Win R3;
A team progresses to the Sweet 16 2 Wins Rie
A team progresses to the Elite 8 3 Wins Ry
A team progresses to the Final 4 4 Wins Ry
A team progresses to the Championship Game 5 Wins R,
A team wins the NCAA Tournament 6 Wins Ry

Each of our outcome variables R,, functions as a dummy variable, with R, = 1 if
the associated outcome statement is true, and R,, = 0 otherwise. Thus, for a team that
successfully makes it to the Elite Eight, but fails to progress to the Final Four, we have:

Ry»=1,Ris=1,Rg=1,R4=0,R, =0,R; =0

Before we investigate a model, an analysis of our key variables and statistics
proves useful in directing our research. We begin with a statistical summary of the
aforementioned performance metrics included in our data set.

TABLE 2. Per Game Summary Statistics for NCAA Qualifying Teams from 2013-2019

Performance Metric Mean Standard Deviation [Min, Max]
Rebounds Per Game 35.841 2.804 [26.0, 44.1]
Points Per Game 74.612 5.130 [61.5, 89.8]
Field Goal Percentage 0.459 0.022 [0.403, 0.526]
Steals Per Game 6.571 1.239 [3.5,11.7]
Blocks Per Game 3.962 1.026 [1.3,7.8]
Turnovers Per Game 11.859 1.326 [7.4,15.7]
Personal Fouls Per Game 17.577 1.833 [12.5,24.2]

Table 2 shows that the season average number of rebounds per game that NCAA
qualifying teams achieved between the years 2013 and 2019 is 35.841. If there does
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in fact exist a correlation between rebounding more and progressing further in the
NCAA tournament, then we would expect that if we limit our sample to only the teams
who win at least one game, we would find a higher per game rebounding average when
compared to the full sample. Table 3 explores this and other filter statistics.

TABLE 3. Summary Statistics for Rebounds Per Game Filtered by Round Achieved

Filter Condition Observations Rebounds per Compared to All Compared to
Game Mean* Qualifiers’ Mean  Previous Filter’s
Mean
- 448 35.841 (2.804) - -

R3 = 224 36.087 (2.771) +0.246 +0.246
Ris = 112 36.297 (2.862) +0.456 +0.210
Rg=1 56 36.107 (2.965) +0.266 -0.190
Ry=1 28 36.157 (2.871) +0.316 +0.050
Ry=1 14 36.393 (3.502) +0.552 +0.236
R =1 7 36.457 (3.299) +0.616 +0.064

*Standard Deviation in Parentheses

A brief analysis of Table 3 shows that with very few exceptions, the number of
rebounds per game increases as the tournament round progresses. This increase adds
validity to our research question and leads to the natural hypothesis that the average
number of rebounds per game that a team achieves does have an impact on how far a
team progresses in the tournament. In order to really investigate this, however, we
will need a solid mathematical model and method.

It also bears noting that as our data set contains data on all tournament teams
from 2013-2019, we can be assured that there are no flaws in our sampling method.
Additionally, our analysis of the impact of the number of rebounds per game on how
far a team makes it in the NCAA tournament will not be hindered by selection bias
related to our independent variable since rebounds per game is a competitive metric
and cannot be completely controlled by any one single team, adding a somewhat
“random” factor to them in addition to the skill it takes to obtain them.

3. Method

In our analysis of the effect that then number of rebounds per game has on the progress
a team makes in the NCAA tournament, we use a linear probability model. As
mentioned previously, our key independent variable is the seasonal average number
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of rebounds that a team achieves on a per game basis (rebounds per game). We
also include other team measures: points per game, field goal percentage, steals per
game, blocks per game, turnovers per game, and personal fouls per game. These team
measures also include a dummy variable that takes on the value of 1 if the team is
assigned a high (1-8) seed and 0 if the team is assigned a low (9-16) seed. Finally, we
also control for year fixed effects (which will be represented by y, with 2013 as the
omitted category).

The outcome variable of our model (R;,) is the probability that a team reaches the
round of n, where n represents the number of teams not yet eliminated (See Table 1).
Since there are six possible rounds that a team could potentially progress to, we will
use this model to analyze all six of these rounds, each with a separate regression.

Summarizing our choice of outcome variables, our independent variable, and our
control variables, our model is represented by the following equation:

Prob(R, = 1) = By + B (rebounds per game) + 6(team measures) +y + u

Our choice of control variables is deliberate and calculated. We are particularly
careful not to include any variables that exhibit multicollinearity with other variables
in the model. Additionally, since our star variable is a common team statistic, it is
essential that we include other team statistics that could reasonably have an effect on
how far a team progresses in the yearly championship. It seems natural to suppose that
being a high scoring team or a team that is extremely accurate would have a favorable
effect on the probability that a team progresses to a given round in the tournament.
Both of these statistics also interact with the rebounding aspect of the game. For these
reasons, we control for points per game and field goal percentage in our model design.
A similar argument can be made for turnovers, steals, blocks, and personal fouls.

Our "high seed" dummy variable is also interesting and important. The difficulty
level of the pathway that a team takes in the NCAA tournament is largely determined
by the seeding it receives at the beginning of the tournament. For instance, a team that
receives a high seed (1-8) has a very realistic chance of playing 2 or 3 games before it
encounters a team seeded higher than it, while a team that receives a low seed (9-16)
may never play a team seeded lower than it. Introducing this dummy variable controls
for this effect due to seeding and allow us to use our model without fear of bias due to
differences in tournament pathway difficulty.

Controlling for fixed effects is also an essential part of this model. Year fixed
effects eliminate the possibility of bias being introduced into our model in the case
of fundamentally different tournaments due to characteristics associated with the
calendar year.

Yet, even with all these controls, the possibility of bias in the model still exists due
to potential omitted factors. One such factor could be the level of confidence that a
team has coming into the tournament. Although a somewhat subjective concept, this
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could be measured by variables associated with the experience of the coach (years of
coaching), experience of the players (number of seniors on the team), and whether
or not the team has won a NCAA tournament game before. Although variables
such as these have not been included in this model (mostly due to the complexity of
collecting the data), we can determine the bias associated with omitting them. As
these confidence variables would likely be positively correlated with the probability
of progressing in the tournament and also positively associated with the average
number of rebounds per game a team achieves during a season, there is a positive bias
associated with this omission. Thus, as we review our results associated with 81, we
must consider these an upper bound rather than a true unbiased estimator.

4. Results

As discussed previously, our model analyzes the probability of a team progressing to
a specific round in the NCAA tournament (i.e. The Round of 32, The Sweet 16, The
Elite 8, The Final 4, The Championship Round, Winning the Championship) based on
key performance metrics, measured at the team level. These results are included in
Table 4.

The regression of this model yields some interesting results. Each additional
rebound that a team averages on a per game basis leads to a 0.0262, 0.0199 increase in
the probability that it will progress to the Round of 32, and the Sweet 16 respectively.
We find that the estimated coefficient for rebounds in the Round of 32 model and
the Sweet 16 model are statistically significant at the 95% level and the 90% level
respectively. Additionally, we find no evidence to support the claim that rebounds per
game has an impact on the probability that a team will progress to the Elite 8, Final 4,
the Championship Round, or eventually become the Champion.

If robust, our results indicate that every additional rebound a team averages is
correlated with a 2.62 and a 1.99 percentage point increase in the probability that
the team will make it to the Round of 32 and to the Sweet 16 respectively. The idea
that each additional rebound averaged per game will lead to a full 2 percentage point
increase in the probability of success in the first two rounds of the tournament, all else
constant, is mind-blowing.

Since our model estimates that rebounds per game have this measurable impact on
the likelihood of a team progressing to the Round of 32, and the Sweet 16, we wish
to test the robustness of these results. To do this, we examine the results of a “naive
model” that includes only rebounds per game as an independent variable. We then
add our control variables related to other team performance metrics (e.g. points per
game, steals per game, high seed, etc.) to that model to create a “partial model” and
reexamine the results. Finally, we compare the results of those two models to our
“original model." The results of this robustness check are reported in Table 5.
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TABLE 4. Linear Probability Regression on the Outcome R, = 1

Outcome Variable

P(Ryp=1) P(Rig=1) P(Rg=1) P(Ry4=1) P(Ry=1) P(R=1)
Rebounds 0.02627%* 0.0199* 0.0102 0.0051 0.0075 0.0033
Per Game
Points Per -0.0129* -0.0054 -0.0050 -0.0013 -0.0013 0.0000
Game
Field Goal 0.051 1#%* 0.0406%** 0.0342%%* 0.0101 0.0110* 0.0045
Pct
Steals Per 0.0700%:%:* 0.0501 sk 0.0366%#* 0.0226%: 0.0126 0.0120*
Game
Blocks Per 0.0468%* 0.0220 0.0267 0.0175 -0.0011 -0.0022
Game
Turnovers -0.0832%3* -0.0347%* -0.0348%** -0.0173 -0.0200°%** -0.0066
Per Game
Pers. Fouls -0.0080 -0.0272%* -0.0178 -0.0187** -0.0072 -0.0044
Per Game
High Seed 0.3110%:%* 0.2640%:* 0.1130%:#:* 0.0558%: 0.0317* 0.0179
1-8)

Year FE Included Included Included Included Included Included
Constant -1.421%* -1.544%%% -1.090%* -0.194 -0.354 -0.233
*#¥p < 0.01 **p < 0.05 *p<0.10

TABLE 5. Robustness of Linear Probability Model Verification
QOutcome Variable
P(Rxn=1) P(Rig=1)
Naive Partial Original ‘ Naive Partial Original
Rebounds 0.0157%* 0.03277%:%:* 0.0262%* 0.0145%* 0.0281 %% 0.0199*
Per Game
(2) (-0.0105) (+0.0065) - (-0.0054) (+0.0082) -

Team - Included Included - Included Included
Measures
Year Fixed - - Included - - Included

Effects

*%p < 0.01 **p < 0.05 *p<0.10
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In all cases, the estimated coefficient associated with rebounds per game is ex-
tremely similar to the coefficient derived from our original model. When using the
likelihood of progressing to the Round of 32 as our outcome variable, we see just a
0.0105 difference when regressing the naive model. Similarly, we see a 0.0054 differ-
ence between the naive and original estimations with the Sweet 16 round. Controlling
for other team measures, but excluding fixed effects due to year and seeding, results in
a more inflated coefficient in both cases.

In addition to using these comparative models to check for robustness, we also use
a logit model to verify the results of our linear probability model for the Round of 32
and the Sweet 16, controlling for all of the same variables. Table 6 reflects marginal
effects of the results of this logit estimation in comparison to our original regression.

TABLE 6. Logit Model and Linear Probability Model Comparison

Outcome Variable

P(R3n =1) P(Ri6=1)
Logit LPM (Original) ‘ Logit LPM (Original)
Rebounds Per 0.0273%* 0.0262%* 0.0197 sk 0.0199%*
Game
(2) (+0.0011) - (-0.0008) -
Team Measures Included Included Included Included
Year FE Included Included Included Included

#55p < 0.01 #*p < 0.05 *p<0.10

A comparison between the logit and linear probability models a result that is even
more similar than before. For the Round of 32, our coeflicients on rebounds per game
differ by only 0.0011. We see only a slight variation in the rebounding coefficients
in our Sweet 16 iteration, with a 0.0008 difference. The similarity between these
coeflicients indicates that our model and the results it has produced are sound. So in
all cases our robustness checks have agreed with our original model.

5. Conclusion

The results of the additional regressions reported in Table 5 and Table 6 show that our
original results are robust, and we conclude that the more rebounds per game that a
team averages, the higher the likelihood is that it will progress to the Round of 32, and
the Sweet 16. In fact, every additional rebound that a team averages during the regular
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season is expected to lead to a 2.62 percentage point increase in the probability that it
will win at least one round in the tournament, and a 1.99 percentage point increase in
the probability that the team will progress to the Sweet 16 when controlling for the
factors mentioned in this paper.

For each rebound to have roughly a 2 percentage point impact on the probability
of a team progressing through the first two rounds of the tournament is an astonishing
result, and based upon these findings, we would expect high rebounding teams to be
very successful in the early rounds of the tournament.

Some discussion on why we see this result in the early rounds of the tournament,
but not in the later rounds is also necessary. On the surface, our results seem to suggest
that in the final rounds of the tournament, season-average rebounding performance
doesn’t make a huge difference in the result of the game. It could be argued that
the high-energy environment of the final rounds of the tournament create a unique
situation for teams where other factors such as mental toughness, handling pressure,
and so on, play bigger roles in success than simply season consistency.

A more likely culprit, however, is the small sample size of data that this study
included for the final rounds of the tournament. Because this paper was based on
the results of 7 NCAA tournaments, it includes data for just 7 champion-winning
teams, 14 championship-contending teams, 28 Final 4 teams, and 56 Elite 8 teams.
Smaller sample sizes make it extremely difficult to obtain statistically significant
results, and there is the definite possibility that rebounding still has a measurable
impact on performance in the final rounds of the tournament. Additional research
including large sample sizes of teams from the final rounds of the tournament is the
next step in the process of determining the impact that rebounding has on all rounds
of the tournament, and not just the early rounds.

The results of this study have far-reaching implications for both basketball teams,
and the fans of the game. A team wanting to prepare itself for the end-of-year NCAA
tournament can increase its odds of success in the early rounds of the tournament
by focusing on rebounding during the regular season, as our results have shown that
effectiveness in this area of the game is correlated with success in the tournament.
Meanwhile, for fans filling out their brackets at the beginning of March, our results
show that it would be prudent to examine how many rebounds a team averages per
game before making a decision on whether to include that team in his or her bracket.
Comparing rebounds per game in every matchup may even lead to more accurate
predictions of upset wins.

In any case, this discovered correlation between rebounds per game and progress
in the NCAA tournament is yet another tool in the process of building a better bracket.
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